The reconcile package is used for DOM reconcilation in Isomorphic Go web applications.

doc.go 7.7KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243
  1. // Copyright 2013 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. // Package ipv6 implements IP-level socket options for the Internet
  5. // Protocol version 6.
  6. //
  7. // The package provides IP-level socket options that allow
  8. // manipulation of IPv6 facilities.
  9. //
  10. // The IPv6 protocol is defined in RFC 8200.
  11. // Socket interface extensions are defined in RFC 3493, RFC 3542 and
  12. // RFC 3678.
  13. // MLDv1 and MLDv2 are defined in RFC 2710 and RFC 3810.
  14. // Source-specific multicast is defined in RFC 4607.
  15. //
  16. // On Darwin, this package requires OS X Mavericks version 10.9 or
  17. // above, or equivalent.
  18. //
  19. //
  20. // Unicasting
  21. //
  22. // The options for unicasting are available for net.TCPConn,
  23. // net.UDPConn and net.IPConn which are created as network connections
  24. // that use the IPv6 transport. When a single TCP connection carrying
  25. // a data flow of multiple packets needs to indicate the flow is
  26. // important, Conn is used to set the traffic class field on the IPv6
  27. // header for each packet.
  28. //
  29. // ln, err := net.Listen("tcp6", "[::]:1024")
  30. // if err != nil {
  31. // // error handling
  32. // }
  33. // defer ln.Close()
  34. // for {
  35. // c, err := ln.Accept()
  36. // if err != nil {
  37. // // error handling
  38. // }
  39. // go func(c net.Conn) {
  40. // defer c.Close()
  41. //
  42. // The outgoing packets will be labeled DiffServ assured forwarding
  43. // class 1 low drop precedence, known as AF11 packets.
  44. //
  45. // if err := ipv6.NewConn(c).SetTrafficClass(0x28); err != nil {
  46. // // error handling
  47. // }
  48. // if _, err := c.Write(data); err != nil {
  49. // // error handling
  50. // }
  51. // }(c)
  52. // }
  53. //
  54. //
  55. // Multicasting
  56. //
  57. // The options for multicasting are available for net.UDPConn and
  58. // net.IPconn which are created as network connections that use the
  59. // IPv6 transport. A few network facilities must be prepared before
  60. // you begin multicasting, at a minimum joining network interfaces and
  61. // multicast groups.
  62. //
  63. // en0, err := net.InterfaceByName("en0")
  64. // if err != nil {
  65. // // error handling
  66. // }
  67. // en1, err := net.InterfaceByIndex(911)
  68. // if err != nil {
  69. // // error handling
  70. // }
  71. // group := net.ParseIP("ff02::114")
  72. //
  73. // First, an application listens to an appropriate address with an
  74. // appropriate service port.
  75. //
  76. // c, err := net.ListenPacket("udp6", "[::]:1024")
  77. // if err != nil {
  78. // // error handling
  79. // }
  80. // defer c.Close()
  81. //
  82. // Second, the application joins multicast groups, starts listening to
  83. // the groups on the specified network interfaces. Note that the
  84. // service port for transport layer protocol does not matter with this
  85. // operation as joining groups affects only network and link layer
  86. // protocols, such as IPv6 and Ethernet.
  87. //
  88. // p := ipv6.NewPacketConn(c)
  89. // if err := p.JoinGroup(en0, &net.UDPAddr{IP: group}); err != nil {
  90. // // error handling
  91. // }
  92. // if err := p.JoinGroup(en1, &net.UDPAddr{IP: group}); err != nil {
  93. // // error handling
  94. // }
  95. //
  96. // The application might set per packet control message transmissions
  97. // between the protocol stack within the kernel. When the application
  98. // needs a destination address on an incoming packet,
  99. // SetControlMessage of PacketConn is used to enable control message
  100. // transmissions.
  101. //
  102. // if err := p.SetControlMessage(ipv6.FlagDst, true); err != nil {
  103. // // error handling
  104. // }
  105. //
  106. // The application could identify whether the received packets are
  107. // of interest by using the control message that contains the
  108. // destination address of the received packet.
  109. //
  110. // b := make([]byte, 1500)
  111. // for {
  112. // n, rcm, src, err := p.ReadFrom(b)
  113. // if err != nil {
  114. // // error handling
  115. // }
  116. // if rcm.Dst.IsMulticast() {
  117. // if rcm.Dst.Equal(group) {
  118. // // joined group, do something
  119. // } else {
  120. // // unknown group, discard
  121. // continue
  122. // }
  123. // }
  124. //
  125. // The application can also send both unicast and multicast packets.
  126. //
  127. // p.SetTrafficClass(0x0)
  128. // p.SetHopLimit(16)
  129. // if _, err := p.WriteTo(data[:n], nil, src); err != nil {
  130. // // error handling
  131. // }
  132. // dst := &net.UDPAddr{IP: group, Port: 1024}
  133. // wcm := ipv6.ControlMessage{TrafficClass: 0xe0, HopLimit: 1}
  134. // for _, ifi := range []*net.Interface{en0, en1} {
  135. // wcm.IfIndex = ifi.Index
  136. // if _, err := p.WriteTo(data[:n], &wcm, dst); err != nil {
  137. // // error handling
  138. // }
  139. // }
  140. // }
  141. //
  142. //
  143. // More multicasting
  144. //
  145. // An application that uses PacketConn may join multiple multicast
  146. // groups. For example, a UDP listener with port 1024 might join two
  147. // different groups across over two different network interfaces by
  148. // using:
  149. //
  150. // c, err := net.ListenPacket("udp6", "[::]:1024")
  151. // if err != nil {
  152. // // error handling
  153. // }
  154. // defer c.Close()
  155. // p := ipv6.NewPacketConn(c)
  156. // if err := p.JoinGroup(en0, &net.UDPAddr{IP: net.ParseIP("ff02::1:114")}); err != nil {
  157. // // error handling
  158. // }
  159. // if err := p.JoinGroup(en0, &net.UDPAddr{IP: net.ParseIP("ff02::2:114")}); err != nil {
  160. // // error handling
  161. // }
  162. // if err := p.JoinGroup(en1, &net.UDPAddr{IP: net.ParseIP("ff02::2:114")}); err != nil {
  163. // // error handling
  164. // }
  165. //
  166. // It is possible for multiple UDP listeners that listen on the same
  167. // UDP port to join the same multicast group. The net package will
  168. // provide a socket that listens to a wildcard address with reusable
  169. // UDP port when an appropriate multicast address prefix is passed to
  170. // the net.ListenPacket or net.ListenUDP.
  171. //
  172. // c1, err := net.ListenPacket("udp6", "[ff02::]:1024")
  173. // if err != nil {
  174. // // error handling
  175. // }
  176. // defer c1.Close()
  177. // c2, err := net.ListenPacket("udp6", "[ff02::]:1024")
  178. // if err != nil {
  179. // // error handling
  180. // }
  181. // defer c2.Close()
  182. // p1 := ipv6.NewPacketConn(c1)
  183. // if err := p1.JoinGroup(en0, &net.UDPAddr{IP: net.ParseIP("ff02::114")}); err != nil {
  184. // // error handling
  185. // }
  186. // p2 := ipv6.NewPacketConn(c2)
  187. // if err := p2.JoinGroup(en0, &net.UDPAddr{IP: net.ParseIP("ff02::114")}); err != nil {
  188. // // error handling
  189. // }
  190. //
  191. // Also it is possible for the application to leave or rejoin a
  192. // multicast group on the network interface.
  193. //
  194. // if err := p.LeaveGroup(en0, &net.UDPAddr{IP: net.ParseIP("ff02::114")}); err != nil {
  195. // // error handling
  196. // }
  197. // if err := p.JoinGroup(en0, &net.UDPAddr{IP: net.ParseIP("ff01::114")}); err != nil {
  198. // // error handling
  199. // }
  200. //
  201. //
  202. // Source-specific multicasting
  203. //
  204. // An application that uses PacketConn on MLDv2 supported platform is
  205. // able to join source-specific multicast groups.
  206. // The application may use JoinSourceSpecificGroup and
  207. // LeaveSourceSpecificGroup for the operation known as "include" mode,
  208. //
  209. // ssmgroup := net.UDPAddr{IP: net.ParseIP("ff32::8000:9")}
  210. // ssmsource := net.UDPAddr{IP: net.ParseIP("fe80::cafe")}
  211. // if err := p.JoinSourceSpecificGroup(en0, &ssmgroup, &ssmsource); err != nil {
  212. // // error handling
  213. // }
  214. // if err := p.LeaveSourceSpecificGroup(en0, &ssmgroup, &ssmsource); err != nil {
  215. // // error handling
  216. // }
  217. //
  218. // or JoinGroup, ExcludeSourceSpecificGroup,
  219. // IncludeSourceSpecificGroup and LeaveGroup for the operation known
  220. // as "exclude" mode.
  221. //
  222. // exclsource := net.UDPAddr{IP: net.ParseIP("fe80::dead")}
  223. // if err := p.JoinGroup(en0, &ssmgroup); err != nil {
  224. // // error handling
  225. // }
  226. // if err := p.ExcludeSourceSpecificGroup(en0, &ssmgroup, &exclsource); err != nil {
  227. // // error handling
  228. // }
  229. // if err := p.LeaveGroup(en0, &ssmgroup); err != nil {
  230. // // error handling
  231. // }
  232. //
  233. // Note that it depends on each platform implementation what happens
  234. // when an application which runs on MLDv2 unsupported platform uses
  235. // JoinSourceSpecificGroup and LeaveSourceSpecificGroup.
  236. // In general the platform tries to fall back to conversations using
  237. // MLDv1 and starts to listen to multicast traffic.
  238. // In the fallback case, ExcludeSourceSpecificGroup and
  239. // IncludeSourceSpecificGroup may return an error.
  240. package ipv6 // import "golang.org/x/net/ipv6"
  241. // BUG(mikio): This package is not implemented on NaCl and Plan 9.